POSTERS NUMBERS

Poster sessions:

- 1- October 20th Lunch and Posters
- 2- October 20th Posters + Wine and Cheese
- 3- October 21st Lunch and Posters

Number	Poster Presenter	Abstract title	Session
1		Reduction in the density of GIRK channels and loss of	
	Alejandro Martín-Belmonte	their co-clustering with GABAB receptors in the	
	-	hippocampus of APP/PS1 mice	1
2	Alessandra Folci	OLIGOPHRENIN-1: A NOVEL SUMO TARGET IN SYNAPTIC	
		FUNCTION AND DYSFUNCTION	2
3	Alessandro Chioino	Impact of mitofusin 2 on accumbens-associated	
		behaviors and underlying neurobiological mechanisms	3
	31 5 (Synaptic Molecular Alterations Implicated in the	
5	Àlex Bayés	Neurodevelopmental Disorder Caused by SYNGAP1	2
		Potential strategy for the therapeutic regulation of the	
6	Alex Fletcher-Jones	endocannabinoid system with interfering peptides that	
		modulate SGIP1 binding	3
_		Influence of GABAergic interneurons in the refinement of	
7	Alfonso Aguilera	brain callosal circuits	1
		Glia-to-interneuron conversion in the postnatal mouse	
8	Ana Beltran Arranz	cortex	3
		HCN channelopathy and auditory hypersensitivity in the	
9	Ana Castro	Shank3 mouse model of ASD	3
	Ana Filipa Terceiro	Methamphetamine-induced remodelling of hippocampal	
10		neurons is orchestrated via cdc42 pathway	1
	Ana Moreira de Sá	Physiological role of the full-length amyloid precursor	
11		protein (APP) in presynaptic plasticity and information	
		transfer within hippocampal CA3 circuits	2
	Ana Osorio Oliveira	The role of astrocyte-microglia interplay on synaptic	
12		pruning in cerebral organoids from Schizophrenia	
		patients	3
	Ângela S. Inácio	Aberrant hippocampal transmission and behavior in mice	
13		with a stargazin mutation linked to intellectual disability	3
	Anna Corradi	PRRT2 PATHOGENETIC MUTATIONS IMPACT ON NaV1.2	
14		SODIUM CHANNEL BINDING AND FUNCTION	2
	Anna Karpova	Preventing Jacob-induced transcriptional inactivation of	
15		CREB protects synapses from β-amyloid in Alzheimer's	
13		Disease	1
	Anwesha Ghosh	Adenosine A3 receptors as targets to an antiseizure drug	
16		to inhibit hippocampal GABA transport	3
	Attila Köfalvi	Presynaptic Interactions Between Adenosine and	
17			

		Analysis of Synapse-enriched Circular RNAs for Loss-of-	
18	Ayca Olcay	Function Studies in Primary Cortical Neurons	1
		Synaptic transmission is affected by the lack of	
19	Bárbara Correia	plasmalogens	3
	+	MiR-186-5p inhibition rescues chronic stress-induced	
20	Beatriz Rodrigues	synaptic deficits	1
		Dissecting the transcriptional programs that orchestrate	
21	Blanca Lorente Echeverría	mossy fiber synapse development	2
		Interplay between Palmitoylation and Phosphorylation	
22	Busra Perihan Yucel	Regulates Synaptic Kainate Receptor Surface Expression	3
	+	THE ROLE OF ASTROCYTIC A2A RECEPTORS ON	
23	Cátia R. Lopes	HIPPOCAMPAL SYNAPTIC PLASTICITY AND MEMORY	1
		Novel Role of CDKL5 in the Inhibitory Synapse and a	
24	Charlotte Kilstrup-Nielsen	Possible Therapeutic Strategy for CDKL5-Related Defects	2
	_	Alzheimer's disease risk factor CD2AP causes synapse	
25	Cláudia Guimas Almeida	dysfunction via actin-dependent control of spine	
23	cidada Gairias Airricida	morphology	3
		Measurements of cytosolic cAMP in 3T3 embryonic cells	
26	Danaja Kuhanec	and astrocytes using FRET-based nanosensor	1
		Studying corticostriatal synaptic structure/function	
27	Daniela Pereira	relationship and motor learning-induced plasticity	2
	David Vandael	Myelination speeds up PV+ BC mediated inhibition onto	
28		CA1 pyramidal neurons	3
	Débora Serrenho	Human anti-CASPR2 autoantibodies impact synaptic	
29		transmission and neuronal excitability	1
		Determinants of short-term synaptic plasticity at a high	
30	Delia N Chiu	release probability synapse	2
		Ataxia Telangiectasia Mutated (ATM) safeguards synaptic	
31	Dimitra Ranti	homeostasis upon cellular stress	3
	Dimphna Meijer	A compact conformation of Teneurin dimers for	
32		neuronal circuit wiring	1
	Diogo Tomé	Regenerative and synaptogenic effect of human	
33		umbilical cord perivascular cells secretome in central	
		nervous system neurons	2
	Domenico Azarnia Tehran	Selective Endocytosis of Ca2+-permeable AMPARs by the	
34		Alzheimer's Disease Risk Factor CALM Bidirectionally	
		Controls Synaptic Plasticity	2
25	Egor Dzyubenko	Transient attenuation of extracellular matrix supports	
35		synaptic remodeling after stroke	1
36	Elena Ferrari	Rabphilin-3A as novel target to counteract alpha-	
36		synuclein induced synaptic loss in Parkinson's disease	2
27	-1 -	Using iPSCs to study the evolutionary aspects of synapse	
37	Elena Taverna	maturation	3
		Neddylation-dependent protein degradation is a nexus	
38	Eleonora Cuboni	between synaptic insulin resistance, neuroinflammation	
30			

39	Elisa Corti	Fragile-X Mental Retardation protein mediates BDNF-	
	2.134 60161	induced upregulation of synaptic NMDA receptors	2
40		Dissecting the contribution of astrocytes and upper layer	
	Elizabeth Brockman	neurons to human cortical circuit dynamics in Down	
		Syndrome	3
41	Erica Tagliatti	Microglial TREM2 receptor signaling shapes neuronal	
	Lited ragnatti	morphology and function during development.	1
	Esperanza López Merino	The role of H-Ras in metabotropic glutamate	
42		receptordependent long term depression and cognitive	
		behavior	2
	Fatima Rubio-Pastor	Acute genetic elimination of a synaptic co-chaperone to	
43		study and to revert presynaptic dysfunction and	
		neurodegeneration	3
44	Filipe Duarte	Regulation of hippocampal dendritic mitochondria by	
	Timpe buarte	BDNF	1
45	Florian olde Heuvel poster	Interleukin-13 and its receptor are neuronal proteins	
40	1	involved in synaptic and neuronal physiology	2
46	Florian olde Heuvel poster	Shank2 identifies a subset of glycinergic interneurons	
40	2	involved in altered nociception in an autism model	2
47	Gabriele Marcassa	Mapping compartment-specific synaptic protein	
47	Gabilele Mai Cassa	distribution in somatosensory circuits	1
48	Ciampaolo Milior	Epileptogenic features of neural progenitors derived	
40	Giampaolo Milior	from cerebral biopsies of FCDs patients in chimeric mice	3
40	Ciantus Masalla	NT-3/TrkC-dependent regulation of NMDA receptors:	
49	Gianluca Masella	implications for fear extinction	3
F0	Civia and Campanata	Neurodevelopmental effects of valproic acid exposure in	
50	Giuseppe Cammarata	human brain organoids	1
F4	Icaballa Darbiana	Microtubules as a novel therapeutic target for CDKL5	
51	Isabella Barbiero	deficiency disorder	2
F.2	lé a a a Danisa a a	Uniformization of action potentials in variable caliber	
52	János Brunner	axons	3
F.3	Jeannette Schmidt	Regulation of Glutamatergic Synapses by the Rho GTPase	
53		Activating Protein ARHGAP8	1
E 4	Joana Correia	Unraveling The Role of Polyubiquitination in Presynaptic	
54		Release	2
	Joana Ferreira	NMDA receptors nanoarchitecture: an emerging	
55		regulator of glutamatergic synapses	3
	João Pedro Lopes	The impact of inosine on hippocampal synaptic	
FC		transmission and plasticity involves adenosine released	
56		through equilibrative nucleoside transporters rather	
		than the direct activation of adenosine receptors	1
		STEP regulates early neuronal development of	
57	Joel Pereira Pires	hippocampal neurons	2
		CD2AP, AN ALZHEIMER'S GENETIC RISK FACTOR,	
58	Jorge Castanheira	CONTROLS SPINAL F-ACTIN AND AMPAR TRAFFICKING IN	
	l so be easterment	SYNAPSES	3

EO	locá Matauc	Controlled natterning of supanse formation in vitra	1
59	José Mateus	Controlled patterning of synapse formation in vitro	1
60	Julie JEZEQUEL	Cell- and input-specific perisomatic inhibition patterns	3
		onto layer 5 pyramidal neuron subpopulations	2
61	Julien Dupuis	Ketamine enhances NMDAR synaptic trapping and	
		alleviates molecular and behavioral deficits elicited by	
		anti-NMDAR encephalitis patient antibodies	3
62	Kaja Belko Parkel	Adenosine- and noradrenaline-induced increase in	
		cytosolic glucose and lactate in isolated astrocytes	1
63	Karolina Talandyte	Exploring the roles of SENP3 in kainate receptor	
	Karonna raiandyte	trafficking	2
64	Katarzyna Grochowska	Activity-dependent lysosomal exocytosis of chaperone-	
04		mediated autophagy substrates in dendrites	3
CE	1	New insights into the roles of SNAP-29 in neuronal and	
65	Lia Carvalhais	synaptic functions	1
		The Modulation of Thalamic Reticular Nucleus Neurons	
66	Loredana Cumpana	by Corticotropin-Releasing Hormone	2
	+	GRID1/GluD1 homozygous variants linked to intellectual	
67	Ludovic Tricoire	disability and spastic paraplegia impair mGlu1/5 receptor	
		signaling and excitatory synapses	3
		Neuroligins induce dendritic outgrowth in an ICAM5-	
68	Luís Ribeiro	dependent manner.	1
		Age-dependent NMDA receptor function is regulated by	
69	Luisa V. Lopes	the amyloid precursor	2
		·	
70	Maëla Paul	Coding the identity of a single synapse type: the climbing	2
		fiber/Purkinje cell synapse	3
71	Malka Cohen-Armon	Long-term memory acquisition and loss are dependent	4
		on PARP1- Erk2 synergism.	1
72	Manuela Rizzi	Identifying convergent dysregulation of mRNA	_
		translation in multiple models of autism	2
73	Margarida Falcão	Somatosensory processing in a mouse model of ASD	3
74	Maria Italia	Anti-GluA3 antibodies in Frontotemporal Dementia: an in	
,		vivo approach	1
75	Maria Joana Pinto	Microglial TNFα orchestrates phosphorylation of synaptic	
, ,		proteins and controls homeostatic sleep	3
76	Mariana Barata	Bin1 function in inhibitory synapses: compromised by	
70		Alzheimer's genetic risk variants	2
	Mariana Laranjo	Conditional deletion of Gprasp2 in PV-positive neurons	
77		drives hippocampal circuit alterations and cognitive	
		dysfunction	1
	Mariana Martins	Exploring the missing link between primary cilia and	
78		neurodevelopmental disorders: the case of a novel	
- 3		MBD5 variant in a patient with severe epilepsy	2
		FUNCTIONAL MODULATION OF KV7.2 CHANNELS BY	
79	Marina Ventura Rodrigues	STARGAZIN	3
80	Marta Dias	PirB Receptor Mediates a Retrograde Cellular Response	4
		to Amyloid-β Oligomers	1

		K Cl. cotranguetor (KCC2) activation as a novel	
81	Miranda Mele	K+-Clcotransporter (KCC2) activation as a novel therapeutic strategy for epilepsy	2
82	Mzia Zhvania	Aging affects synaptic morphology of the hippocampus in male and female Wistar rats	3
02	Nadozhda Janaridzo	Noise exposure and ultrastructural changes in the adult	
83	Nadezhda Japaridze	rat hippocampus.	1
84	Nicoletta Landsberger	Neural precursor/stem cell-based therapy for the	
04	Webietta Landsberger	treatment of Rett syndrome	2
		The Effect of Toluene on the Ultrastructure of the	
85	Nino Pochkhidze	Hippocampus CA1 Areas in Rats. Electron Microscope	
		Study	3
		Microglia in the presynaptic dysfunction and	
86	Nozha Borjini	neurodegeneration in mice lacking the synaptic co-	_
		chaperone CSPα/DNAJC5	1
0=		Cerebellar dysfunction in animal models of	
87	Nuno Beltrão	neurodevelopmental disorders with human mutations in	2
		the CACNG2 gene	2
00		Cognitive behavioural deficits in a knock-in mouse model	
88	Orsolya Antal	with a human schizophrenia-associated mutation in the	2
		CACNG2 gene	3
89	Ottovio Maria Boggoro	A systems pharmacology approach for innovative	
69	Ottavia Maria Roggero	treatments to promote recovery of neuronal atrophy in Rett syndrome	1
90	Patrick Laurent	PPRP-1/PHACTR holophosphatase controls SV cycle	2
30	ratifick Laufelit	Non-synaptic axonal neurotransmission regulates	
91	Rafael Almeida	myelinated circuit formation in vivo	3
		CSPa/DNAJC5 in glutamatergic synaptic function and	
92	Rafael Fernandez-Chacon	maintenance	1
		Dendritic spine neck restriction regulates heterosynaptic	
93	Rahul Gupta	plasticity	2
		Using Cell profiler for an unbiased and automatic analysis	
94	Raquel Domingues	of subsynaptic alterations relevant to Alzheimer's	
	Traduct Domingues	disease	3
	Roberta De Rosa	The Functional Role of CDKL5 at the Inhibitory Synapse	
95		and its Interaction with the Cytoplasmatic Collybistin-	
		Gephyrin Complex	1
		Adenosine A2A receptor blockade reverts alterations of	
96	Rodrigo A. Cunha	synaptic plasticity and mitochondria to restore memory	
	_	performance in aged rats	2
97	Rui O. Costa	Autophagy dysfunction in axons: a trigger for Alzheimer's	
31		disease?	3
		Chronic blockade of adenosine A2A receptors revert	
98	Samira Ferreira	prefrontal cortex synaptic plasticity deficits induced by	
		binge-like exposure to ethanol in adolescent female rats	1
99	Santiago López Begines	Lipofuscinosis induced by Kufs disease DNAJC5/CSPα is	
	Tarriago Lopez Begines	not induced by the lack of DNAJC5/CSPα in vivo mutants	2

100	Sara Costa Silva	Electrical stimulation of astrocytes and its impact on	
		astrocytic calcium signaling	3
101	Sara Tacconelli	Identifying synaptic disease-modifying interactors of FUS	1
102	Sean Weaver	Untangling plasticity mechanisms using synaptically patterned networks in vitro	2
103	Severine Sigoillot	Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal	
		phencyclidine model of schizophrenia	3
104	Simo Ojanen	GluK1-containing kainate receptors and synchronous	_
104		activity in the hippocampus	1
105	Uri Ashery	Dissection of the Cellular and Molecular mechanisms of cAMP-dependent synaptic plasticity in the hippocampus	2
106	Victor Briz	Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders	2
107	Zaha Merlaud	THE WNK/SPAK pathway tunes GABAA receptors at inhibitory synapses in the hypocampus	1